Particle Physics

Q1.		(a)	The K⁻ meson has strangeness –1.	
		(i)	State the quark composition of a meson.	
				(1)
		(ii)	State the baryon number of the K ⁻ meson.	
				(1)
		(iii)	What is the quark composition of the K⁻ meson?	
				(1)
	(b)	The	e figure below shows a Feynman diagram for a possible decay of the strange quark.	
			$\frac{\overline{v_e}}{w}$	
		(i)	Which interaction is responsible for this decay?	
				(1)
		(ii)	Energy and momentum are conserved when the W ⁻ particle is produced. State two other quantities that are also conserved and one that is not.	
			conserved	
			conserved	
			not conserved	(3)

			ł	⟨ - → +	+	
						(2) (Total 9 marks)
Q2.		inter	actio	ons can interact with electrons bons. In the following table identifnvolved.		
				interaction	exchange particle	
						_
						(2)
	(b)	State	e the	e quark composition of a proton.		
						(1)
	(c)	A ch	ange	e in quark identity is involved in	electron capture.	
		(i)	Exp	plain what is meant by electron	capture.	
						,

(iii) Complete this equation for the decay of a K⁻ meson.

		(**	(3) Fotal 9 marks)
Q3.	(a)	 (i) Give an example of an exchange particle other than a W⁺ or W⁻ particle, a state the fundamental force involved when it is produced. exchange particle	nd (4)
	р	om the following list of particles, $\bar{\mathbf{n}} \vee_{\mathbf{e}} \mathbf{e}^{+} \boldsymbol{\mu}^{-} \boldsymbol{\pi}^{0}$ Intify all the examples of hadrons,	(4)
			(4) Fotal 8 marks)

In the space below draw a Feynman diagram representing electron capture.

(ii)

	K° + p ──► n +	- π ⁺				
(a)	Show that this commonentum.	ollision obeys thre	e conservation la	aws in addition to e	energy and	
						(3
(b)		n has a strangenes quark structure of t		ticles.		
	K°					
	π+					
	p					(
					(Tota	al 7 marks
					(Tota	al 7 marks
					(Tota	al 7 marks
	(a) The table giv	ves information ab	out some fundan	nental particles.	(Tota	al 7 marks
		ves information ab ble by filling in the			(Tota	al 7 marks
					baryon number	al 7 marks
	Complete the tal	ble by filling in the	missing informat	ion.	baryon	al 7 marks
	Complete the tal	duark structure	missing informat	strangene	baryon	al 7 mark
	particle	quark structure	missing informat	strangene	baryon	al 7 mark
	particle	quark structure uud uus	missing informat	strangene 0	baryon number	
	particle Sigma +	quark structure uud uus	charge + 1	strangene 0	baryon number	
(b)	particle Sigma *	quark structure uud uus ud	charge + 1 as an antiparticle	strangene 0 0	baryon number	
	particle Sigma + Each of the particle	uud uus ud icles in the table ha	charge + 1 as an antiparticle n particle and its	strangene 0	baryon number 0	al 7 marks
	particle Sigma +	quark structure uud uus	charge + 1	strangene 0	baryon number	al 7 m

		(11)	State the quark structure of an antibaryon.	
				(1)
		(iii)	Give one property of an antiparticle that is the same for its corresponding particle and one property that is different.	
			Same	
			Different	
			(Total 11 ma	(2) rks)
				ŕ
Q6.		(a)	(i) Name two baryons.	
				(2)
		(ii)	State the quark structure of the pion π^+ .	
				(1)
	(b)	(i)	The K^+ kaon is a strange particle. Give one characteristic of a strange particle that makes it different from a particle that is not strange.	
				(1)

	(ii)	One of the fo	ollowing equat	ions represer	t a possible de	cay of the K⁺ kaon.	
		$K^+ \rightarrow 7$					
		$K^+ \rightarrow \mu$	$^{+}$ + $\overline{\nu_{\mu}}$				
		State, with a	a reason, whic	h one of thes	e decays is not	possible.	
(c)	And	other strange p	article, X, dec	cays in the foll	owing way:		(2)
()		$\rightarrow \pi^- +$,	3 ,		
	(i)		nteraction is in	volved in this	decay.		
							(1)
	(ii)	Show that X	must be a ne	utral particle.			
							(1)
	(iii)	Deduce who answer.	ether X is a m	eson, baryon	or lepton, expla	aining how you arriv	e at your
							(2)
	(iv)	Which partic	cle in this inter	action is the r	nost stable?		
							(1) (Total 11 marks)
	(0)	(i)	o the partial	in the fallers	na liat that was:	ho offootod by the	wook
	(a)	(i) Underlir interaction.	ie the particles	s in the tollowi	ng list that may	be affected by the	weak
		positron	neutron	photon	neutrino	positive pion	

Q7.

(ii) Underline the particles in the following list that may be affected by the electromagnetic force.

electron antineutrino proton neutral pion negative muon

(4)

(b) A positive muon may decay in the following way,

$$\mu^{\scriptscriptstyle +} \Rightarrow e^{\scriptscriptstyle +} + \nu_{\scriptscriptstyle e} + \bar{\nu}_{\scriptscriptstyle \mu}$$

(i) Exchange each particle for its corresponding antiparticle and complete the equation to show how a negative muon may decay.

µ⁻⇒

(ii) Give **one** difference and **one** similarity between a negative muon and an electron.

difference

similarity

(3)

(c) Complete the Feynman diagram, which represents electron capture, by labelling all the particles involved.

(3)

(Total 10 marks)

- **Q8.** Sub-atomic particles can either be hadrons or leptons.
 - (a) (i) State **one difference** between these two groups of particles.

(1)

(ii) Give an example of a non-strange hadron and an example of a lepton.

hadron

lepton

		(iii)	Hadrons can be further divided into two groups. Name these two groups and state a difference between them.		
	(h)	The F	Feynman Diagram in the figure below represents an interaction known as electron	(3)	
	(b)	captu			
		State the la	a conservation law obeyed in this interaction. Show how the property mentioned in w is conserved.		
			(Total 8 mark	(2) (s)	
Q9.	(-	dadrons are a group of particles composed of quarks. Hadrons can either be baryons esons.		
		(i)	What property defines a hadron?		
		(ii)	What is the quark structure of a baryon?	(1)	
		(iii)	What is the quark structure of a meson?	(1)	
Physics	AndN	` ,	Tutor com·····	(1)	8

	(b)		_		ce between a partic	•	cle.
		diffe	rence				
	(c)	Com	nplete the table	below which lists	properties of the an	tiproton.	(2)
				charge / C	baryon number	quark structure	
			antiproton				(2)
	(d)	The	K⁻ is an examp	ole of a meson with	n strangeness –1. T	The K⁻ decays in th	ne following way:
			$\rightarrow \mu + \overline{V_u}$				
		(i)	State, with a	reason, what intera	action is responsible	e for this decay.	
							(2)
		(ii)	State two prodecay.	perties, other than	energy and mome	ntum, that are cor	nserved in this
							(2) (Total 11 marks)
Q10.			quark model way, they form cor		elp understand hadr	rons. Quarks cann	oot exist
	(a)	(i)	List the three	combinations tha	t quarks can form.		

(ii)	Give the quark combination for a positive pion, π^* and an antiproton, $\bar{\rho}$.	
	π^{\star}	
	¯р	(4)
		٠,

(b) The event represented by, $K^- + p \rightarrow K^0 + K^+ + X$, is a strong interaction.

The K⁻ has strangeness −1 and the kaons K⁺ and K⁰ both have strangeness +1.

(i) Use the conservation laws to deduce the strangeness, charge, baryon number and lepton number of the particle represented by X.

Strangeness
Charge
Baryon number
Lepton number

(ii) What will particle X eventually decay into?

(Total 8 marks)

Q11. (a) Complete the labelling of the Feynman diagram below representing positron emission from an individual nucleon.

(3)

(b)	(1)	what is the virtual exchange particle used by electromotive force?	
	(ii)	State two differences between the exchange particles used by the weak interaction and used by the electromagnetic force.	
			(3)
			(3)
(c)		theoretical work of Dirac suggested that for every particle there should exist a esponding antiparticle. The first to be antiparticle to be discovered was the positron.	
	(i)	State what is meant by an antiparticle.	
	(ii)	Write down the corresponding antiparticle for each of the particles listed in the	

IOIIOW	ing table.		
	Particle	antiparticle	

Particle	antiparticle	
β-	β+	
π°		
K ^o		
γ		

(5) (Total 11 marks)

Q12.	(a)	(i) Name a force which acts between an up quark, u, and an electron. Explain, with reference to an exchange particle, how this force operates.	
		You may be awarded marks for the quality of written communication in your answer.	
	<i></i> .		
	(ii)	With what particle must a proton collide to be annihilated?	
			(4)
(b)	A si	gma plus particle, Σ^+ , is a baryon.	
	(i)	How many quarks does the Σ ⁺ contain?	
	(ii)	If one of these quarks is an s quark, by what interaction will it decay?	
	(iii)	Which baryon will the $\Sigma^{\scriptscriptstyle +}$ eventually decay into?	
		(Total 7ma	(3) arks)